国产精品内射日本在线观看,女人操女人大逼,国产成人精品男人女人高潮,欧美性爱2022天堂网

你的位置:首頁 > 測試測量 > 正文

Altera Announces Quad-Core 64-bit ARM Cortex-A53 for
Stratix 10 SoCs

發(fā)布時間:2013-10-30 來源:Altera 責任編輯:xueqi

[Introduction]Altera Announces Quad-Core 64-bit ARM Cortex-A53 for Stratix 10 SoCs,Manufactured on Intel’s 14 nm Tri-Gate Process, it will offer exceptional adaptability, performance, power efficiency and design productivity for a broad range of applications, Altera Stratix® 10 SoCs Will Deliver Industry’s Most Versatile Heterogeneous Computing Platform. 
 
Altera Corporation (NASDAQ: ALTR) today announced that its Stratix 10 SoC devices, manufactured on Intel’s 14 nm Tri-Gate process, will incorporate a high-performance, quad-core 64-bit ARM Cortex™-A53 processor system, complementing the device’s floating-point digital signal processing (DSP) blocks and high-performance FPGA fabric. Coupled with Altera’s advanced system-level design tools, including OpenCL, this versatile heterogeneous computing platform will offer exceptional adaptability, performance, power efficiency and design productivity for a broad range of applications, including data center computing acceleration, radar systems and communications infrastructure. 
The ARM Cortex-A53 processor, the first 64-bit processor used on a SoC FPGA, is an ideal fit for use in Stratix 10 SoCs due to its performance, power efficiency, data throughput and advanced features. The Cortex-A53 is among the most power efficient  of ARM’s application-class processors, and when delivered on the 14 nm Tri-Gate process will achieve more than six times  more data throughput compared to today’s highest performing SoC FPGAs. The Cortex-A53 also delivers important features, such as virtualization support, 256TB memory reach and error correction code (ECC) on L1 and L2 caches. Furthermore, the Cortex-A53 core can run in 32-bit mode, which will run Cortex-A9 operating systems and code unmodified, allowing a smooth upgrade path from Altera’s 28 nm and 20 nm SoC FPGAs.
“ARM is pleased to see Altera adopting the lowest power 64-bit architecture as an ideal complement to DSP and FPGA processing elements to create a cutting-edge heterogeneous computing platform,” said Tom Cronk, executive vice president and general manager, Processor Division, ARM. “The Cortex-A53 processor delivers industry-leading power efficiency and outstanding performance levels, and it is supported by the ARM ecosystem and its innovative software community.”
Leveraging Intel’s 14 nm Tri-Gate process and an enhanced high-performance architecture, Altera Stratix 10 SoCs will have a programmable-logic performance level of more than 1GHz; two times the core performance of current high-end 28 nm FPGAs.
“High-end networking and communications infrastructure are rapidly migrating toward heterogeneous computing architectures to achieve maximum system performance and power efficiency,” said Linley Gwennap, principal analyst at The Linley Group, a leading embedded research firm. “What Altera is doing with its Stratix 10 SoC, both in terms of silicon convergence and high-level design tool support, puts the company at the forefront of delivering heterogeneous computing platforms and positions them well to capitalize on myriad opportunities.”
By standardizing on ARM processors across its three-generation SoC portfolio, Altera will offer software compatibility and a common ARM ecosystem of tools and operating system support. Embedded developers will be able to accelerate debug cycles with Altera’s SoC Embedded Design Suite (EDS) featuring the ARM Development Studio 5 (DS-5™) Altera® Edition toolkit, the industry’s only  FPGA-adaptive debug tool, as well as use Altera’s  software development kit (SDK) for OpenCL to create heterogeneous implementations using the OpenCL high-level design language . 
“With Stratix 10 SoCs, designers will have a versatile and powerful heterogeneous compute platform enabling them to innovate and get to market faster,” said Danny Biran, senior vice president, corporate strategy and marketing at Altera. “This will be very exciting for customers as converged silicon continues to be the best solution for complex, high-performance applications.” 
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉

德兴市| 龙江县| 合水县| 浦北县| 西乌珠穆沁旗| 井陉县| 肥城市| 宜川县| 嘉荫县| 青浦区| 敦煌市| 大宁县| 中牟县| 高唐县| 揭西县| 莲花县| 辽中县| 潞城市| 仲巴县| 云阳县| 南丰县| 康平县| 独山县| 北安市| 西和县| 冷水江市| 肇源县| 来宾市| 潞城市| 林芝县| 杭锦后旗| 浪卡子县| 新河县| 南陵县| 息烽县| 冕宁县| 边坝县| 和田县| 喜德县| 临桂县| 集安市|